A simple but most effective web-based tool to reach young people.

© CISCI 2005
The Name
CISCI – Cinema and Science.

The USP
CISCI is a combination of two highly involving media: Movies and the Internet.

The Goal
CISCI raises interest of the young generation in sciences. Strong influence on their attitude towards studying sciences.
The Content

Moving pictures of any kind are cool, involving, inspiring.

Movies create trends, and have a broader coverage of young people than other media.
What kind of movies will work for CISCI?
A lot of different movies will meet the CISCI requirements:

- recent blockbusters
- classics from the 20's, 30's, 50's, ...
- tv-programs
- documentaries
The Target Group

CISCI addresses teachers.

CISCI provides the teachers with "new" involving, exciting and high impact media for the classroom.

CISCI also addresses pupils and students.
Take a look at how CISCI works.
Movies, science and explanations for your work in the classroom.

New movie clip recently added!
What happened before the Scene
...

Short Description of Scene

A man who accidentally recorded the assassination of a Senator is persecuted through streets, buildings and on rooftops by NSA-Members, who planned and committed the murder. They use a lot of high-tech in order to catch this man. When he is not inside a building they have real-time pictures from a satellite, which show every motion of the hunted man. They persecute him as well with a helicopter and when this is shown one can see that it is quite cloudy.
The movie-clip will start to play.
Surely you know that satellites are used to send telephone messages and television programmes around the world. Some satellites carry cameras and infrared sensors. They can take pictures of cloud patterns, which are used to predict the weather. They can also be used for spying, taking pictures of towns, airfields and harbours, like you saw in the movie clip.

But can you explain, what makes satellites go round the Earth?

The force of gravity pulls a satellite down towards Earth. But when the satellites are put up into space they are given a sideways speed so that as they fall they also move sideways. This makes them move in a curve. If a satellite has just the right speed for its height, it will move in an orbit around the Earth. Most satellites orbit the Earth in a path that is very close to a circle. Some are put into orbits that are slightly squashed circles called ellipses. (Satellites which are used to send telephone messages and television...
programmes around the world are at exactly height and speed, they will stay above the same place on the surface of the Earth, we call them parking orbits.)

Do you think the NSA can observe Robert Dean in real time by using a satellite?

In addition to the technical problems it is nearly impossible to do a real time observation by a satellite. If you want to make photographs of the surface of the Earth, no camera can look beyond the clouds, as long as your eyes can't do that.

picture to help to understand the content! Picture of the movie where you see a satellite and added arrows for the speedsganz am Ende des Films gäbe es eine geeignete Aufnahme!

Experiment:

How can you make a thing move in a circle?
You can tie a small object to a piece of a string and whirl it around your head. The object travels in a circle, just like a satellite. You can feel a force in the string. This force pulls the object towards the centre of the circle.

Animated gif: Person who is whirling above described device around his head.

Questions:
(1) What two things keep the object moving in a circle around your head? The object moves in a circle because of its speed and the pull of the string towards the centre of the circle.
(2) What do you think would happen if you cut the string? If you cut the string, the object keeps moving in the direction it is moving at the time you cut the string. (We say that it flies off at a tangent.)
Note.
From this point the procedure will be similar to the previous movie clip.
CISCI is part of the European Science Education Initiative **NUCLEUS** supported by the European Commission.

For further information please contact: Heinz Oberhummer, ohu@kph.tuwien.ac.at
Thank you for your attention.